Dynamic Weighted Majority: A New Ensemble Method for Tracking Concept Drift

نویسندگان

  • J. Zico Kolter
  • Marcus A. Maloof
چکیده

Algorithms for tracking concept drift are important for many applications. We present a general method based on the Weighted Majority algorithm for using any on-line learner for concept drift. Dynamic Weighted Majority (dwm) maintains an ensemble of base learners, predicts using a weighted-majority vote of these “experts”, and dynamically creates and deletes experts in response to changes in performance. We empirically evaluated two experimental systems based on the method using incremental naive Bayes and Incremental Tree Inducer (iti) as experts. For the sake of comparison, we also included Blum’s implementation of Weighted Majority. On the stagger Concepts and on the sea Concepts, results suggest that the ensemble method learns drifting concepts almost as well as the base algorithms learn each concept individually. Indeed, we report the best overall results for these problems to date.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Weighted Majority: An Ensemble Method for Drifting Concepts

We present an ensemble method for concept drift that dynamically creates and removes weighted experts in response to changes in performance. The method, dynamic weighted majority (DWM), uses four mechanisms to cope with concept drift: It trains online learners of the ensemble, it weights those learners based on their performance, it removes them, also based on their performance, and it adds new...

متن کامل

Detecting Concept Drift in Data Stream Using Semi-Supervised Classification

Data stream is a sequence of data generated from various information sources at a high speed and high volume. Classifying data streams faces the three challenges of unlimited length, online processing, and concept drift. In related research, to meet the challenge of unlimited stream length, commonly the stream is divided into fixed size windows or gradual forgetting is used. Concept drift refer...

متن کامل

Dynamic Weighted Majority for Incremental Learning of Imbalanced Data Streams with Concept Drift

Concept drifts occurring in data streams will jeopardize the accuracy and stability of the online learning process. If the data stream is imbalanced, it will be even more challenging to detect and cure the concept drift. In the literature, these two problems have been intensively addressed separately, but have yet to be well studied when they occur together. In this paper, we propose a chunk-ba...

متن کامل

Dynamic Integration of Classifiers for Tracking Concept Drift in Antibiotic Resistance Data

In the real world concepts are often not stable but change with time. A typical example of this in the medical context is antibiotic resistance, where pathogen sensitivity may change over time as new pathogen strains develop resistance to antibiotics which were previously effective. This problem, known as concept drift, complicates the task of learning a model from medical data and requires spe...

متن کامل

Online approach to handle concept drifting data streams using diversity

Concept drift is the trend observed in almost all real time applications. Many online and offline algorithms were developed in the past to analyze this drift and train our algorithms. Different levels of diversity are required before and after a drift to get the best generalization accuracy. In our paper, we present a new online approach Extended Dynamic Weighted Majority with diversity (EDWM) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003